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Fig. 9. Theoretical SWR characteristics of single microstrip~slotline transi-
tion and experimental characteristics of two cascade-connected transitions.
A: insertion loss. & =1.5 mm, ¢, =9.8.

below 1.45 in the frequency range 2 to 12.7 GHz with a local
increase to 1.6 in the vicinity of 8 GHz. The achieved bandwidth
is comparable to that reported by Schiippert [6] for a similar
transition. The midband performance of the realized transitions
is, however, somewhat better, which is attributed to the inclusion
of the slotline—microstrip voltage transformation ratio n in the
modeling,

V. CONCLUSIONS

A resonant technique has been described that allows the accu-
rate measurement of slotline short- and open-circuit equivalent
reactances. Numerous experimental results have been given for
circuits on an alumina substrate (¢ = 9.8). These include a graph
of planar short-end reactance for normalized slot width values of
0.05 to 2 as well as the frequency characteristics of several open
circuits. It has been demonstrated that these open circuits behave
as nonuniform resonators with the resulting bandwidth limita-
tion. A 1.5-6 GHz low SWR microstrip-slotline transition de-
sign has been presented that employs one of the measured open
circuits. A 2-12.7 GHz transition has been obtained by scaling
the first transition to a thinner substrate.
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A Moment Method Solution of a Volume-Surface
: Integral Equation Using Isoparametric
Elements and Point Matching

JIAN-MING JIN, STUDENT MEMBER, IEEE, JOHN L. VOLAKIS,
SENIOR MEMBER, IEEE, AND VALDIS V. LIEPA, MEMBER, IEEE

Abstract —It is shown that traditional subdomain elements such as
rectangles and triangles with a pulse expansion basis could lead to inaccu-
racies when simulating biological scatterers having high permittivities. In
this paper, isoparametric elements are used in a moment method imple-
mentation to remove modeling inaccuracies of fields and boundaries asso-
ciated with traditional elements. Numerical results are also given that show
the improvement achieved in the scattering solution for high-contrast
circular cylinders.

I. INTRODUCTION

A volume-surface integral equation (VSIE) was recently pre-
sented [1], [2] for electromagnetic scattering by inhomogeneous
cylinders. A moment method (MM) solution of the VSIE was
also considered using rectangular and triangular elements with
pulse expansion basis functions and point matching. Such a
moment method solution, however, becomes inaccurate in the
case of scatterers having high permittivities with transverse elec-
tric (TE) incidence or high permeabilities with transverse mag-
netic (TM) incidence. To overcome this difficulty, in this paper
we develop a MM solution by employing isoparametric elements.

Isoparametric elements were first introduced in finite element
analysis [3]. The main advantage of using such elements is to
allow an accurate modeling of arbitrarily shaped geometries.
However, it appears that only recently [4] have they been em-
ployed in solutions of volume integral equations for electromag-
netics. Below we first discuss the inaccuracy associated with
traditional solutions of integral equations for penetrable scatter-
ers having high refractive indices. This is followed by the intro-
duction of isoparametric elements and the presentation of the
MM solution of the VSIE using such elements. Results are
subsequently presented which show the stability of the solution
in the case of cylindrical geometries associated with high refrac-
tive indices.

II. DISCUSSION OF THE INTEGRAL EQUATIONS

In this section we first examine the VSIE for the computation
of the internal fields in a cylinder having nonunity relative
permittivity e, and permeability x.. Assuming the cylinder has its
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infinite dimension along the z axis, we have that the field
satisfies the general VSIE [1}]:

FNC(r)+ K [ [[o(r) = u(m)]F(r) Go(rir') o'

+ [ [ utr)-LF() v Gor1r)] &

L) a1 R I

u(rYF(r)
1
“Lutr)+ ur )] F(r)

forrnoton T

ey

forronT

where

1

u(r) =m

F(r) = E(r) o(r) =€.(r)

for TM incidence and
1
e.(r)

for TE incidence, in which E, and H, denote the z components
of the electric and magnetic fields, respectively, F'N¢ denotes the
corresponding incident field, and G,(r{r’) is the two-dimensional
free-space Green’s function. In addition, £ denotes the region
occupied by the cylinder, T denotes the interface where u(r) has
a step discontinuity, 7 is the unit vector normal to I' pointing
from the “— side to the “+” side and f denotes the Cauchy
principal value integral.

Let us now examine the numerical implications which may
arise when the VSIE is implemented in the case of large |¢,| with
TE incidence. We observe that the right-hand side of (1) is
proportional to 1/|¢, | for nominal values of the internal field H..
For large |¢,| this implies that the integrals over £ and T' must
together give a value nearly equal to the negative of H™C. That
is, if |e,| =100 and we demand a 1 percent solution accuracy for
the internal fields, the integrals must be computed with a corre-
sponding accuracy of 0.01 percent. In general, the presence of |, |
acts as an error amplifier and we may conclude that, for a
solution accuracy of 8 percent, the integrals must be evaluated
with a corresponding accuracy of 8/|e, | percent. This statement
has been experimentally verified and, clearly, for large |e,| a
crude discretization is unlikely to produce the accuracy de-
manded here. The same conclusion holds for the case of large |u,|
with TM incidence.

A similar examination of the electric field integral equation
(EFIE) given by Borup et al. [5, eq. (1)] for TE scattering also
reveals that for a desired solution accuracy of § percent, the
integrals in the EFIE must be evaluated with a corresponding
accuracy of 8/m percent, where m=|E™NC|/|E,| z\/e., . Thus,
even though the EFIE is slightly less demanding in accuracy, it is
still unstable for scatterers with large refractive indices. This
exposition satisfactorily explains the difficulties encountered in
[5] as well as the success of their modified approach. Also, the
results given by Boyes and Kennedy [6] can be explained in this
manner.

When we examine the magnetic field integral equation (MFIE)
presented by Peterson and Klock [7, eq. (2)] for TE scattering, we
find that the MFIE is more stable than the VSIE and EFIE;

F(r)=H(r)  u(r)= o(r) =1, (r)
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Fig. 1. An example for breaking a circular region: a 12 quadrilateral element

model with 45 nodes.

however, it involves a second derivative of the unknown field
quantity and as a result demands higher order basis functions. In
particular, the VSIE can be implemented with a pulse basis and
the EFIE with a linear basis but the MFIE requires a quadratic
basis.! Since the introduction of a quadratic basis in the VSIE
and EFIE will improve their accuracy, there is no clear choice in
deciding which of the three is more attractive for numerical
implementation. Each is certainly associated with its own advan-
tages and disadvantages for large refractive indices, but for
nominal values of ¢, the VSIE given in (1) is generally superior
over the others.

In the next section we consider an implementation of the VSIE
using isoparametric elements which can provide accurate geomet-
rical simulation and field representation. They are, therefore,
expected to provide the required accuracy for the simulation of
high-contrast dielectrics.

III. FORMULATION WITH ISOPARAMETRIC ELEMENTS AND
POINT MATCHING

In this section we describe a numerical solution of the VSIE
using isoparametric elements with point matching. For conve-
nience, we can write (1) as

FNC(r)+ | fg A(r|F) F(r) ds’ + fr B(rlr") F(+") dI

u(r)F(r) forrnoton T

- é‘[“(’#)*‘u("_)]l—"(r) forronT 2)

where the expressions for A(r|r’) and B(r|r’) are determined by
direct comparison with (1).

In a numerical solution of (1) or (2) using isoparametric
elements, the two-dimensional region £ is broken up into a
number of quadrilaterals whose sides can be curved, as shown,
for example, in Fig. 1. A usual rule for this subdivision is that the
interface I" coincides with the boundaries of the quadrilaterals.
Assuming now that the discretization results in M2 quadrilater-
als and that M1 curved segments make up the contour(s) T, (2)

1 - : .
If €, is umiform within each element, the corresponding basis functions can
be one order lower.
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Fig. 2. A quadratically curved segment in the xy plane can be transformed
into a straight segment lying on the € axis.
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In (3), the ficld in the eth quadrilateral has been expanded as

n2
Fe(r) = gl ve(r) e (4

where V() (i=1,2,- - -, n2) are a set of known expansion basis
functions and ¢ (i=1,2,---,n2) are the corresponding un-
known coefficients. Similarly, the field in the sth segment was
expanded as

F(r) = >: u(ne )

where U(r) (i=1,2,---,nl) represent the known expansion
basis functions and ¢, (i=1,2,---,nl) are the unknown con-
stants.

Before proceeding with a solution of (3) it is first necessary to
choose the basis functions V(r) and U’(r) in accordance with
the definition of the isoparametric elements. A possible method
of constructing U and V7 is to choose them so that ¢} (i=
1,2,- - -, nl) represent the field values at nl nodes on the sth
segment and likewise ¢ (i=1,2,---,n2) represent the field
values at n2 nodes of the eth quadrilateral. A point-matching
procedure applied to (3) will then lead to a matrix equation for
the solution of the nodal field values.

To find U} as described above it is convenient to introduce the
transformation

3
x= 2 L(§)x,

=1

3
= '; Li(&) y, (6)

allowing a linearization of a quadratically curved segment as
shown in Fig. 2. In (6), L} (i=1,2,3) are the shape functions
which take the well-known form [3]

1 1
L§=——2—(1—§)£ L§=—2—(1+§)$

In addition, (6) implies the relation

B ax dy ‘d
dim (52) (ag) dE = |7 dt

L5=1-¢%

(N
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Fig. 3. A quadrilateral element with quadratically curved sides i the xy

plane can be transformed nto a square in the local £y plane.

and the unit vector 7 is now given by

O P A T
n—( 8§ -y g)lJ] .

It is observed that L;(£) is unity at the ith node and thus by
choosing U = L, ¢ will coincide with the nodal values of the
field F°(r). This is actually the definition of the isoparametric
elements since L describe the geometrical shape of the discrete
elements. When thlS expansion is substituted in (3), it leads to
integrals of the form

(8)

= [ B Li(8) dr = fjlzr(rw) L()F(#)1dE (9)

and these can be evaluated via a four-point Gaussian integration
formula giving
4

=Y W B(rlr ) L (£)17°(€)]

where & = — £, =—0.8611363116, &, =— ¢, = —0.3399810436,
W, =W, = 03478548451, W, =W, =0.6521451549, and r/ =
x(§,)%+ y(§,) 9, in which x(§)) and y(£)) are given by (6).
The treatment of the area integral over Q follows a similar
procedure. We can again introduce the transformation

(10)

Mw

Ne(£,m)x, Z

1 =

‘(Em)y,  (11)

i

allowing the representation of an arbitrarily shaped quadrilateral
with quadratically curved sides in the xy plane to a square in the
£n plane as shown in Fig. 3. The shape functions are now Nf
(i=1,2,---,8) and they take the known form [3]

M= (-1 ()

M=+ =M (E=1-1)
=%(1+$)(1+n)($+n~1)

N;=%(1—§)(1+n)(—é+n-1)

M= (461 7)

TR

M= (1-8)1tn) M=z (1-D(1-7).
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Fig. 4. The axial field along the x axis inside a homogeneous dielectric
circular cylinder of radws a = 0.05A and €, =72.0— ;j162.0. (a) TM inci-
dence; (b) TE incidence.

With this transformation the area element ds can be expressed as

ds =|J°|dE dn (12)
in which
o dx dy dx dy
1= a¢ 9n  on 9¢

is the determinant of the Jacobian transformation matrix. As in
the one-dimensional case, the shape function Nf(£,7) is unity
when £ =¢£, and n=7,. Thus, in accordance with the definition
of the isoparametric elements, we choose V= N¢ and as such
the coefficients ¢; will coincide with the nodal values of the field
Fe(r). When this expansion is substituted in (3) we obtain
integrals of the form

I"=f£yA(r|r’)Nf(r’) ds’

=fj1f_11A(r|r') NE(&, )| Je(& ) [dE'dy (13)

and by using a nine-point Gaussian integration formula, I° can
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TABLE I
BistaTIiCc RADAR CROSS SECTION (0/A) FOR A HOMOGENEOUS
DIELECTRIC CIRCULAR CYLINDER WITH RADIUS
a=0.05\ AND €, =72.0— j162.0

TM case TE case
Angle (deg.) | 20 unk | 45 unk | Exact || 45 unk | 76 unk | Exact
0 -4 03 -3.96 -3 95 -20.44 | -20.46 | -20.54
60 -4.63 -456 | -4.55 || -30.28 | -28.93 | -28.99
120 -5.89 -5.83 [ -5.82 || -19.99 | -1972 | -19.65
180 -6.56 -649 [ -6.49 || -15.85 | -15.75 | -1571
1.40
exact (eigenfunction)
120 |- 2} 45 unknowns (this method)
) 76 unknowns (this method)
1.00 F\a a 85 unknowns (Peterson & Klock)
N
=
0.80 -
0.60
0.40
-0.050 -0.025 0.000 0.025 0.050
x/A
Fig. 5 The magnetic field along the x axis inside a homogeneous dielectric

circular cylinder of radius ¢ =0 05A and ¢, =4 0~ ;100.0 for TE mcidence.
A companson with exact data and those given 1n [7].

be written as

303
7= 1 L wwA(ring ) Ne (€m0 (¢n) | (19)
J=1k=1
where § =m, = —§; = — ;= —0.7745966692, ¢, =9, =0.0, W
= W, = 0.5555555556, W, =0.8888888889, and ro=x(§,, )%
+y(§,,m) 9, with x(§,,m) and y(§,,1,) as given in (11).
The numerical implementation of the above formulation is
rather straightforward. However, the accuracy of the solution will
be seen to be remarkable for scatterers having large values of u.

IV. NUMERICAL RESULTS

To validate the above MM formulation and show its useful-
ness, we performed a few numerical experiments. For the results
shown below, the incident field is assumed to be a plane wave
propagating in the x direction and the axis of the cylinder is
coincident with the z axis.

We first consider a dielectric circular cylinder with a radius
0.05A (free space wavelength) and relative permittivity as high as
€, =72.0— j162.0, corresponding to a muscle cylinder at 100
MIHz. Fig. 4 shows the electric and magnetic fields inside the
cylinder for the TM and TE cases, respectively. Also, Table I
gives the bistatic radar cross section, all compared with the exact
eigenfunction solutions. As seen, there is an excellent agreement
when the element size is chosen sufficiently small. We note that
our previous MM codes [1], [2] employing rectangular and trian-
gular elements with pulse basis functions are unable to predict
the correct TE result shown in Fig. 4(b). A similar conclusion was
also reached by Peterson and Klock [7] when they examined
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Richmond’s [8] formulation, where pulse basis functions were
employed for the solution of the electric field integral equation.

In [7], Peterson and Klock presented a solution of an improved
magnetic field integral equation by employing triangular ele-
ments with linear basis functions in the TE case. Here we
compare our results with those in [7] for a dielectric cylinder with
a radius 0.05A having a relative permittivity ¢, = 4.0— j100.0.
The results are shown in Fig. 5 and, as seen, the present approach
provides a higher accuracy.

V. CONCLUSION

In this paper, we examined three integral equations for TE
scattering by dielectric cylinders having large values of permittiv-
ity. A moment method solution of the volume-surface integral
equation was then developed by employing isoparametric ele-
ments and point matching. Differing from the traditional solu-
tions using pulse basis, the one presented here was shown to be
more accurate and stable, particularly in the case of scatterers
having large refractive indices.
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Characteristic Impedance of a Tubular Dielectric
Cylinder Covered with Conducting Arc Strips

V. ZARGARI anp T. C. RAQ, SENIOR MEMBER, IEEE

Abstract —The characteristic impedance of a circular cylindrical dielec-
tric tubular transmission line that is partially covered by thin conducting
arc strips on the outer periphery is determined by conformal transforma-
tion. The variation of the characteristic impedance with the physical
parameters is studied and some numerical results are presented.

I. INTRODUCTION

Circular cylindrical dielectric waveguides that are partially
covered with infinitesimally thin conducting coatings on the
outer periphery have many potential applications in the design of
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transitions, baluns, and impedance transformers. Cylindrical
stripline and cylindrical microstrip line fall into this category.
Assuming that only the TEM mode exists, Wang [1] solved
Laplace’s equation by a dual series method and presented exten-
sive results on the characteristic impedance of such lines. Joshi
and Das [2] analyzed the problem of a cylindrical stripline with a
homogeneous dielectric medium by a conformal transformation
technique. Later, Joshi et al. [3] used the logarithmic transforma-
tion and reduced the problem of cylindrical stripline to an
equivalent planar geometry. Recently, Zeng and Wang [4] also
used conformal fransformation to find expressions for the char-
acteristic impedance in a closed form for cylindrical and elliptical
striplines and microstrip lines with zero and finite-thickness strip
conductors. Reddy and Deshpande [5] obtained a closed-form
expression for the characteristic impedance of a cylindrical
stripline with multilayer dielectrics.

In the present article, the transmission line consists of a hollow
dielectric tube with two infinitely long thin conducting arc strips
on the outer periphery, as shown in Fig. 1(a). Alternatively, the
line can also take the complementary form shown in Fig. 1(b).
The characteristic impedance is determined by first transforming
the geometry to an equivalent planar geometry. In the planar
form, the structure shown in Fig. 1(a) is similar to the coplanar
stripline (CPS), while the geometry of Fig. 1(b) is similar to the
coplanar waveguide (CPW) originally proposed by Wen [6]. The
characteristic impedance of these lines can easily be found from
the design equations given by Gupta et al. [7].

II. THEORY

A hollow dielectric tube of permittivity «,, internal radius a,
and external radius b is considered whose transverse cross section
is shown in Fig. 1(a). Two infinitesimally thin conducting arc
strips of width b¢, symmetrically located with respect to the y
axis, are located on the outer boundary of the dielectric. The
geometry shown in Fig. 1(b) is complementary to that of Fig.
1(a), where the positions of slot and the arc strips are inter-
changed. The angular separation between the strips (or slots) is
denoted by 2¢. The two geometries of Fig. 1 can be transformed
into planar geometries with the transformation function

w=mu/2+ jlnz

(1a)

where

(1b)
refer to the variables in the original geometry and the trans-

formed geometry, as shown in Fig. 2. The surfaces p=a and
p = b transform to the straight lines v; and v,, given by

z=x+jy w=u+ ju

vy=Ina

)
(3)

vy =Inb.

The distance between the two planes v; and v, becomes

h=In(b/a). 4
The width of the conducting strips (or slots) becomes
wy=¢ (5)
and the spacing between them becomes
S=2y. (6)

The characteristic impedance of a coplanar waveguide (CPW)
was calculated by Wen [6] by a quasi-static analysis and confor-
mal mapping, where the dielectric substrate thickness was as-
sumed to be sufficiently large to be considered infinite. For
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