
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 10, OCTOBER 1989 164:1

Fig. 8

Fig. 9.

60 / - Lo

R~ & /xm xx
‘/

[n]
s, m

40 -

6 f[GHz] 3

Frequency characteristics of R,, X,, Xm. 1,= 6.5 mm, w,= 7.5

4
1

SWR

3 -
\ /“

i /’
A+- .-

“\. _.H. ~
2 -

sWR
exp

1

mm.

o 2 L 6 8
f [GHZI

Theoreucal SWR characteristics of single mlcrostrip-slotline transi-

tion and experimental characteristics of two cascade-connected transitions.

,4: inseruon loss, h = 1.5 mm, 6, = 9.8.

below 1.45 in the frequency range 2 to 12.7 GHz with a locaf

increase to 1.6 in the vicinity of 8 GHz. The achieved bandwidth

is comparable to that reported by Schiippert [6] for a similar

transition. The midband performance of the realized transitions

is, however, somewhat better, which is attributed to the inclusion

of the slotline–microstrip voltage transformation ratio n in the

modeling.

V. CONCLUSIONS

A resonant technique has been described that allows the ‘accu-

rate measurement of slotline short- and open-circuit equivalent

reactance. Numerous experimental results have been given for

circuits on an alumina substrate (c = 9.8). These include a graph

of planar short-end reactance for normalized slot width values of

0.05 to 2 as well as the frequency characteristics of several open

circuits. It has been demonstrated that these open circuits behave

as nonuniform resonators with the resulting bandwidth limita-

tion. A 1.5–6 GHz low SWR microstrip-slotline transition de-

sign has been presented that employs one of the measured open

circuits. A 2–12.7 GHz transition his been obtained by scaling

the first transition to a thinner substrate.
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A Moment Method Solution of a Volume–Surface

Integral Equation Using Isoparametric

Elements and Point Matching

JIAN-MING JIN, STUDENT MEMBER, IEEE, JOHN L. VOLAKIS,
SENIORMEMBER,IEEE.AND VAL131S V. LIEPA, MEMBER,IEEE

Abstract —It is shown that traditional subdomain elements such as

rectangles and triangles with a pulse expansion basis could lead to inaccn.

racies when simulating biological scatterers having high perrttittivities. In

this paper, isoparametric elements are used in a moment method imple-

mentation to remove modeling inaccuracies of fields and boundaries asso-

ciated with traditional elements. Numerical results are also given that show

the improvement achieved in the scattering solution for high-contrast

circular cylinders.

I. INTRODIJCTION

A volume–surface integral equation (VSIE) was recently pre -

sented [1], [2] for electromagnetic scattering by inhomogeneous

cylinders. A moment method (Mlbf) solution of the VSIE was

also considered using rectangular and triangular elements with

pulse expansion basis functions and point matching. Such a

moment method solution, however, becomes inaccurate in the

case of scatterers having high pernnittivities with transverse elec.

tric (TE) incidence or high permeabilities with transverse mag-

netic (TM) incidence. To overcome this difficulty, in this paper

we develop a MM solution by employing isoparametric elements.

Isoparametric elements were first introduced in finite element

analysis [3]. The main advantage of using such elements is to

allow an accurate modeling of arbitrarily shaped geometries

However, it appears that only recently [4] have they been em.

ployed in solutions of volume integral equations for electromag

netics. Below we first discuss the inaccuracy associated with

traditional solutions of integral equations for penetrable scatter..

ers having high refractive indices. This is followed by the intro-

duction of isoparametric elements and the presentation of the

MM solution of the VSIE using such elements. Results are

subsequently presented which show the stability of the solution

in the case of cylindrical geometries associated with high refrac

tive indices.

II. I)LSCUSSION OF THE INTEGRAL EQUATIONS

In this section we first examine the VSIE for the computation

of the internal fields in a cylinder having nonunity relative

permittivity e, and permeability K.. Assuming the cylinder has its
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infinite dimension along the z axis, we have

satisfies the general VSIE [1]:
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that the field

@Nc(r)+MJJJW)-401 ~(r’)Go(w) A’

+f/v’~(r’)[HOv’f %(dr’)]~’
Q

!
tlGo(r\r’)

+ ~[u(rj) –u(rL)]F(r’) an, dl’

(u(r) F(r) for r not on r
——

t
+[~(r+)+dr-)]~(r) for r on r

(1)

where

1
F(r) =li(r) u(r) =— u(r) =c, (r)

P,(r)

for TM incidence and

1
F(r) =H=(r) u(r) =— ~(r) =k(r)

c,(r)

for TE incidence, in which E= and H= denote the z components

of the electric and magnetic fields, respectively, FINC denotes the

corresponding incident field, and Go(rlr’) is the two-dimensional

free-space Green’s function. In addition, O denotes the region

occupied by the cylinder, r denotes the interface where u(r) has

a step discontinuity, 2 is the unit vector normal to r pointing

from the “–” side to the “+” side and { denotes the Cauchy

principal value integral.

Let us now examine the numerical implications which may

arise when the VSIE is implemented in the case of large le. I with

TE incidence. We observe that the right-hand side of (1) is

proportional to l/lc, I for nominal values of the internaf field Hz.

For large lc, 1 this implies that the integrals over Q and r must

together give a value nearly equaf to the negative of Z7~Nc. That

is, if 1(,1 =100 and we demand a 1 percent solution accuracy for

the internal fields, the integrals must be computed with a corre-

sponding accuracy of 0.01 percent. In general, the presence of l~yI

acts as an error amplifier and we may conclude that, for a

solution accuracy of 8 percent, the integrals must be evaluated

with a corresponding accuracy of 8/I c, I percent. This statement

has been experimentally verified and, clearly, for large lc,l a

crude discretization is unlikely to produce the accuracy de-

manded here. The same conclusion holds for the case of large Ipr 1

with TM incidence.

A similar examination of the electric field integral equation

(EFIE) given by Borup et al. [5, eq. (l)] for TE scattering also

reveals that for a desired solution accuracy of 8 percent, the

integrals in the EFIE must be evaluated with a corresponding

accuracy of 8/m percent, where m = lEjNc \/lE1l =&. Thus,

even though the EFIE is slightly less demanding in accuracy, it is

still unstable for scatterers with large refractive indices. This

exposition satisfactorily explains the difficulties encountered in

[5] as well as the success of their modified approach. Also, the

results given by Boyes and Kennedy [6] can be explained in this

manner.

When we examine the magnetic field integral equation (MFIE)

presented by Peterson and Klock [7, eq. (2)] for TE scattering, we

find that the MFIE is more stable than the VSIE and EFIE;

Fig, 1. An example for breaking a circular region: a 12 quadrdateral element

model with 45 nodes.

however, it involves a second derivative of the unknown field

quantity and as a result demands higher order basis functions. In

particular, the VSIE can be implemented with a pulse basis and

the EFIE with a linear basis but the MFIE requires a quadratic

basis.1 Since the introduction of a quadratic basis in the VSIE

and EFIE will improve their accuracy, there is no clear choice in

deciding which of the three is more attractive for numerical

implementation. Each is certainly associated with its own advan-

tages and disadvantages for large refractive indices, but for

nominal values of (, the VSIE given in (1) is generally superior

over the others.

In the next section we consider an implementation of the VSIE

using isoparametric elements which can provide accurate geomet-

rical simulation and field representation. They are, therefore,

expected to provide the required accuracy for the simulation of

high-contrast dielectrics.

III. FORMULATION WITH ISOPARAMETRIC ELEMENTS AND

POINT MATCHING

In this section we describe a numerical solution of the VSIE

using isoparametric elements with point matching. For conve-

nience, we can write (1) as

(u(r)F(r) for r not on r

——

t
~[u(r+)+u(r-)]F(r) for r on r

(2)

where the expressions for A (rlr’) and B(rlr’) are determined by

direct comparison with (l).

In a numerical solution of (1) or (2) using isoparametric

elements, the two-dimensional region Q is broken up into a

number of quadrilaterals whose sides can be curved, as shown,

for example, in Fig. 1. A usual rule for this subdivision is that the

interface r coincides with the boundaries of the quadrilaterals.

Assuming now that the discretization results in M2 quadrilater-

als and that Ml curved segments make up the contour(s) r, (2)

lIf e, is muform within each element, the corresponding basn functions can

be one order lower.
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Y

Fig. 2. A quadratically curved segment in the xy plane can be transformed

into a stra@t segment lying on the c axis,

becomes

M2 n2

F’NC(’) + z x dfj&w)Jw) ~’
~=1,=1

Ml .1 .

(u(r)F(r) for r not on r

——

i
~[~(r+)+~(~.)]F(r)for ron r.

(3)

In (3), the field in the eth quadrilateral has been expanded as

F’(r) = ~ ~’(r)+f (4)
,=1

where Jf(r) (i = 1,2,. ... n2) are a set of known expansion basis

functions and # (i =1,2,... , n 2) are the corresponding un-
known coefficients. Similarly, the field in the s th segment was
expanded as

F’(r) = f ~(r)+~ (5)
,=1

where ~’(r) (i =1,2,. . . . nl) represent the known expansion

basis functions and # (i= 1,2,..., nl) are the unknown con-

stants.

Before proceeding with a solution of (3) it is first necessary to

choose the basis functions Y’(r) and Us(r) in accordance with

the definition of the isopara&et~c elements. A possible method

of constructing ~’ and ~ is to choose them so that # (z’=

1,2,. ... nl) represent the field values at nl nodes on the s th

segment and likewise ~~ (z’= 1,2,. ... n2) represent the field

values at n 2 nodes of the e th quadrilateral. A point-matching

procedure applied to (3) will then lead to a matrix equation for

the solution of the nodal field values.

To find ~’ as described above it is convenient to introduce the

transformation

3 3

,=1 j=l

allowing a linearization of a quadratically curved segment as

shown in Fig. 2. In (6), L; (i =1,2,3) are the shape functions

which take the well-known form [3]

L;=–; (l–&)& L;=; (l+g)f L;=l–~2.

In addition, (6) implies the relation
!
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Fig, 3. A quadrilateral element with quadratically curved sides m the .XP

plane can be transformed mto a square in the local .$q plane.

and the unit vector 6 is now given by

(8)

It is observed that Lf(.$) is unity at the ith node and thus by

choosing ~ = L;, ~~ will coincide with the nodal values of the

field F’(r). This is actually the definition of the isoparametric

elements since .L~ describe the geometrical shape of the discrete

elements. When this expansion is :substituted in (3), it leads to

integrals of the form

and these can be evaluated via a four-point Gaussian integration

formula giving

P= ~ ~B(rl~’)~~(~,)1~(~,)1 (lo)
1=1

where fl = –.& = – 0.8611363116, &z = – .$3= – 0.3399810436,

WI = W4 = 0.3478548451, W2 = JZi = 0.6521451549, and ~’ =

X($J)~ + Y(~,)j, in wfich X(fj) md y(f’) are given by (6).
The treatment of the area integral over Q follows a similar

procedure. We can again introduce the transformation

8

x= ~ Iy’(f, q)x, 8(y= ET’ t,q)y, (11)
1=1 1=1

allowing the representation of an arbitrarily shaped quadrilateral

with quadratically curved sides in the xy plane to a square in the

[q plane as shown in Fig. 3. The shape functions are now ~

(i=l,2,. . .,8) and they take the known form [3]

N;=–:(l –&)(l–q)(t+n+l)

N;=:(l+ g)(l–q)(&– q-l)

N;=:(l+ g)(l+q)(&+T–l)

N:=:(l– g)(l+q)(–g+q–l)

N;=;(l–tZ)(l–q) N;=:(l+g)(l -q’)

W=;(l-w+d jv;=:(l–g)(l–q z).
.,, ,, —
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Fig. 4. The axial field along the x axis reside a homogeneous dielectric

mrcular cylinder of radms a = 0.05A and 6, = 72.0 – J162.O. (a) TM inci-

dence; (b) TE incidence,

With this transformation the area element ds can be expressed as

ds = lJeld~dq (12)

in which

lrl=:~-;:

is the determinant of the Jacobian transformation matrix. As in

the one-dimensional case, the shape function ~(~, q) is unity

when .$= .$, and q = q,. Thus, in accordance with the definition

of the isoparametric elements, we choose ~ = ~ and as such

the coefficients ~~ will coincide with the nodal values of the field

Fe(r). When this expansion is substituted in (3) we obtain

integrrds of the form

=]’ f ~(rlr’)M($’,~’) lJe(&’,~’)ld&’dn’ (13)
–1 –1

and by using a nine-point Gaussian integration formula, 1’ can

TABLE I

BISTATIC RADAR CROSS SECTION (o/A) FOR A HOMOGENEOUS

DIELECTRIC CIRCULAR CYLINDER WITH RADIUS

a = 0.05X AND C, = 72.0 – j162.O

3

TM case TE case

Angle (deg.) 20 unk 45 unk Exact 45 unk 76 unk Exact

o -403 -3.96 -395 -20.44 -20.46 -20.54

60 -4.63 -456 -4.55 -30.28 -28.93 -28,99

120 -5.89 -5.83 -5.82 -19.99 -1972 -19,65

180 -6.56 -649 -6.49 -15.85 -15.75 -1571

1.40

1.20

1.00

E
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0.40

\’A A 85 unknowns (Peterson& IUcck)

I
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Xlk

Fig. 5 The magnetic field along the x axis inside a homogeneous dielectric

circular cyhnder of radius a = O 05X and 6, = 40 — J1OO.O for TE mcldence.

A comparison with exact data and those given In [7].

be written as

,=lk=l

where [l = ql = – .$3= – T3 = – 0.7745966692, <z = ql = 0.0, W,

= Wq = 0.5555555556, Wz = 0.8888888889, and ~j = X(~,, TL )2

+ Y($J, T?k)}, with x(&,, TJL) and y(&J, w) as given in (11).
The numericaf implementation of the above formulation is

rather straightforward. However, the accuracy of the solution will

be seen to be remarkable for scatterers having large values of u.

IV. NUMERICAL RESULTS

To validate the above MM formulation and show its useful-

ness, we performed a few numericaf experiments. For the results

shown below, the incident field is assumed to be a plane wave

propagating in the x direction and the axis of the cylinder is

coincident with the z axis.

We first consider a dielectric circular cylinder with a radius

0.05A (free space wavelength) and relative permittivity as high as

c, = 72.0 – j162.0, corresponding to a muscle cylinder at 100

MHz. Fig. 4 shows the electric and magnetic fields inside the

cylinder for the TM and TE cases, respectively. Also, Table I

gives the bistatic radar cross section, all compared with the exact

eigenfunction solutions. As seen, there is an excellent agreement

when the element size is chosen sufficiently small. We note that

our previous MM codes [1], [2] employing rectangular and trian-

gular elements with pulse basis functions are unable to predict

the correct TE result shown in Fig. 4(b). A similar conclusion was

also reached by Peterson and Klock [7] when they examined
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Richmond’s [8] formulation, where pulse basis functions were

employed for the solution of the electric field integral equation.

In [7], Peterson and Klock presented a solution of an improved

magnetic field integral equation by employing triangular ele-

ments with linear basis functions in the TE case. Here we

compare our results with those in [7] for a dielectric cylinder with

a radius 0.05A having a relative permittivity c. = 4.0 – j100.0.

The results are shown in Fig. 5 and, as seen, the present approach

provides a higher accuracy.

V. CONCLUSION

In this paper, we examined three integral equations for TE

scattering by dielectric cylinders having large values of permittiv-

ity. A moment method solution of the volume– surface integral

equation was then developed by employing isoparametric ele-

ments and point matching. Differing from the traditional solu-

tions using pulse basis, the one presented here was shown to be

more accurate and stable, particularly in the case of scatterers

having large refractive indices.
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Characteristic Impedance of a Tubular Dielectric

Cylinder Covered with Conducting Arc Strips

V. ZARGARI AND T. C. RAO, SENIORMEMBER,IEEE

Abstract —The characteristic impedance of a circular cylindrical dielec-

tric tubular transmission line that is partiafly covered by thin conducting

arc strips on the outer periphery is determined by conforsmd transforma-

tion. The variation of the characteristic impedance with the physical

parameters is studied and some numerical results are presented.

I. INTRODUCTION

Circular cylindrical dielectric wavegnides that are partially

covered with infinitesimally thin conducting coatings on the

outer periphery have many potential applications in the design of
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transitions, bahms, and impedanoe transformers. Cylindrical

stripline and cylindrical microstrip line fall into this category.

Assuming that only the TEM mode exists, Wang [1] solved

Laplace’s equation by a duaf series method and presented exten-

sive results on the characteristic impedance of such lines. Joshi

and Das [2] analyzed the problem of a cylindrical stripline with a

homogeneous dielectric medium by a conformaf transformation

technique. Later, Joshi et al. [3] used the logarithmic transforma-

tion and reduced the problem of cylindrical stripline to an

equivalent planar geometry. Recently, Zeng and Wang [4] also

used conformal transformation to find expressions for the char-

acteristic impedance in a closed form for cylindrical and elliptical

striplines and microstrip lines with zwo and finite-thickness strip

conductors. Reddy and Deshpande [5] obtained a closed-form

expression for the characteristic impedance of a cylindrical

stripline with mrdtilayer dielectrics.

In the present article, the transmission line consists of a hollow

dielectric tube with two infinitely long thin conducting arc strips

on the outer periphery, as shown in Fig. l(a). Alternatively, the

line can also take the complementary form shown in Fig. l(b).

The characteristic impedance is determined by first transforming

the geometry to an equivalent planar geometry. In the planar

form, the structure shown in Fig. l(a) is similar to the coplanar

stripline (CPS), while the geometty of Fig. l(b) is similar to the

coplanar waveguide (CPW) originally proposed by Wen [6]. The

characteristic impedance of these lines can easily be found from

the design equations given by Gupta et al. [7].

II. THEORY

A hollow dielectric tube of permittivity c,, internal radius a,
and external radius b is considered whose transverse cross section

is shown in Fig. l(a). Two infinitesimally thin conducting arc

strips of width I@, symmetrically located with respect to the y

axis, are located~ on the outer boundary of the dielectric. The

geometry shown in Fig. l(b) is complementary to that of Fig.

l(a), where the positions of slot and the arc strips are inter-

changed. The angular separation between the strips (or slots) is

denoted by 2*. The two geometries of Fig. 1 can be transformed

into planar geometries with the transformation function

W=7T/2+Jh3Z (la)

where

z=x+jy w=u+jv (lb)

refer to the variables in the original geometry and the trans-

formed geometry, as shown in Fig 2. The surfaces p = a and

p = b transform to the straight lines UI and Vz, given by

vl=lna (2)

v2=lnb. (3)

The distance between the two planes VI and v~ becomes

h=ln(b/cz). (4)

The width of the conducting strips (or slots) becomes

WI=+ (5)

and the spacing between them becomes

S=2+ (6)

The characteristic impedance of a coplanar waveguide (CPW)

was calculated by Wen [6] by a quasi-static analysis and confor-

mal mapping, where the dielectric substrate thickness was as-

sumed to be sufficiently large to be considered infinite. For
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